The Fundamental Concepts of Vectors

By

Dr. Mohammed F. Al-Mudhaffer
Department of Physics-College of Education for Pure Science
2020-2021

Outlines:

1.5 Triple Products

1.6 Change of Coordinate System: The Transformation Matrix

1.5 Triple Products

The expression

$$A.(B \times C) \tag{1.36}$$

we can see that the scalar triple product may be written as matrix

$$\begin{array}{c|cccc}
A.(B \times C) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix} = (A \times B).\vec{C}$$
(1.37)

H.W: can you prove that?

Additionally, we can write

$$\vec{A} \times \vec{B} \times \vec{C} = \vec{B}(\vec{A}.\vec{C}) - \vec{C}(\vec{A}.\vec{B}) \tag{1.38}$$

which represents the triple cross products.

Example:

Given the three vectors $\mathbf{A} = \mathbf{i}$, $\mathbf{B} = \mathbf{i} - \mathbf{j}$, and $\mathbf{C} = \mathbf{k}$, find $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$.

Solution:

Using the determinant expression, Equation 1.7.1, we have

$$\begin{array}{c|cccc}
A.(B \times C) = & A_x & A_y & A_z \\
B_x & B_y & B_z \\
C_x & C_y & C_z
\end{array}$$

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \mathbf{1}(-1+0) = -1$$

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}) = (\mathbf{i} - \mathbf{j})0 - \mathbf{k}(1 - 0) = -\mathbf{k}$$

1.6 Change of Coordinate System: The Transformation Matrix

Consider the vector A expressed relative to the triad ijk:

$$A = iAx + jAy + kAz$$

Relative to a new triad i'j'k' having a different orientation from that of ijk, the same vector A is expressed as

$$A = i'Ax' + j'Ay' + k'Az'$$

Now the dot product A. i' is just Ax', that is, the projection of A on the unit Vector i'. Now the dot product is just Ax' as

$$A.i' = (i.i')Ax + (j.i')Ay + (k.i')Az = Ax'$$

 $A.j' = (i.j')Ax + (j.j')Ay + (k.j')Az = Ay'$
 $A.i' = (i.k')Ax + (j.k')Ay + (k.k')Az = Az'$

In similar way, the unprimed components are similarly expressed

$$A.i = (i'.i)Ax' + (j'.i)Ay' + (k'.i)Az' = Ax$$

$$A.j = (i'.j)Ax' + (j'.j)Ay' + (k'.j)Az' = Ay$$

$$A.i = (i'.k)Ax' + (j'.k)Ay' + (k'.k)Az' = Az$$

The above two groups of equations can be written as matrix as following:

$$\begin{vmatrix} A_{\acute{x}} \\ A_{\acute{y}} \\ A_{\acute{z}} \end{vmatrix} = \begin{vmatrix} (i.\acute{i}) & (j.\acute{i}) & (k.\acute{i}) \\ (i.\acute{j}) & (j.\acute{j}) & (k.\acute{j}) \\ (i.\acute{k}) & (j.\acute{k}) & (k.\acute{k}) \end{vmatrix} \begin{vmatrix} A_{x} \\ A_{y} \\ A_{z} \end{vmatrix}$$

The above matrix is called a TRANSFORMATION MATRIX

$$i.i' = (1)(1)\cos(\theta) = \cos(\theta)$$
 $j.i' = (1)(1)\cos(90) = 0$
 $k.i' = (1)(1)\cos(90 + \theta)$
 $=\cos(90)\cos(\theta)-\sin(90)\sin(\theta)$
 $=-\sin(\theta)$

$$\begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix}$$

H. W.

1- Prove that the transformation matrix around z-axis equal to

$$\begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2- Prove that the transformation matrix around x-axis equal to

EXAMPLE 1.8.1

Express the vector $\mathbf{A} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ in terms of the triad $\mathbf{i'j'k'}$, where the $\mathbf{x'y'}$ -axes are rotated 45° around the z-axis, with the z- and z'-axes coinciding, as shown in Figure 1.8.1. Referring to the figure, we have for the coefficients of transformation $\mathbf{i} \cdot \mathbf{i'} = \cos 45^{\circ}$ and so on; hence,

$$\begin{pmatrix} Ax' \\ Ay' \\ Az' \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$A_{x'} = \frac{3}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{5}{\sqrt{2}}$$
 $A_{y'} = \frac{-3}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{-1}{\sqrt{2}}$

$$A_{y'} = \frac{-3}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{-1}{\sqrt{2}}$$

$$A_{z'} = 1$$

so that, in the primed system, the vector \mathbf{A} is given by

$$\mathbf{A} = \frac{5}{\sqrt{2}}\mathbf{i'} - \frac{1}{\sqrt{2}}\mathbf{j'} + \mathbf{k}$$

Thanks for your attention

1.7 Derivative of a Vector

- Consider a vector A, whose components are function of single variable \boldsymbol{u} . The parameter u is usually time t. The vector may represents position ,velocity and so on.
- Hence $A(u) = iA_x(u) + jA_y(u) + kA_z(u)$
- So the derivative of A can be expressed as following:

$$\bullet \frac{dA}{du} = \lim_{\Delta u \to o} \frac{\Delta A}{\Delta u} =
= \lim_{\Delta u \to o} \left(i \frac{\Delta A_x}{\Delta u} + j \frac{\Delta A_y}{\Delta u} + k \frac{\Delta A_z}{\Delta u} \right)
\frac{dA}{du} = \left(i \frac{dA_x}{du} + j \frac{dA_y}{du} + k \frac{dA_z}{du} \right)$$

- This mean the derivative of vector is a vector whose Cartesian components are ordinary derivatives.
- Now, below are the rules of vector differential.

$$\frac{d(A+B)}{du} = \frac{dA}{du} + \frac{dA}{du}$$

$$\frac{d(nA)}{du} = \frac{dn}{du}A + n\frac{dA}{du}$$

$$\frac{d(A.B)}{du} = \frac{dA}{du}B + A.\frac{dB}{du}$$

$$\frac{d(AxB)}{du} = \frac{dA}{du}xB + Ax\frac{dB}{du}$$

1.8 Position vector of particle: Velocity and Acceleration in Rectangular Coordinates:

r = ix + jy + kz ---Position Vector

As x=x(t),y=y(t) and z=z(t) are the components of the position vector of moving particle. So , the particle velocity vector can be written as the following:

$$v = \frac{dr}{dx} = \left(i\frac{dx}{dt} + j\frac{dy}{dt} + k\frac{dz}{dt}\right)$$

$$or \ v = \dot{r} + \dot{x} + \dot{y} + \dot{z}$$

The velocity value is called **the speed** and defined:

$$v = |v| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$$

In rectangular components and the second derivative of velocity is called the acceleration

$$a = \dot{v} = \frac{d\dot{r}}{dx} = \ddot{x} + \ddot{y} + \ddot{z}$$

1.2.3 Multiplication by a Scalar

If c is a scalar and A is a vector, then:

$$cA = c(Ax + Ay + Az) = cAx + cAy + cAz = Ac$$

1.2.4 Vectors Subtraction

$$A - B = (Ax - Bx) + (Ay - By) + (Az - Bz)$$

1.2.6 The Commutative Law of Addition

This law holds for vectors; that is,

$$A + B = B + A$$

Because $A_x + B_x = B_x + A_x$ and similarly for the y and z components.

1.2.7 The Associative Law

$$A + (B + C) = (A_x + (B_x + C_x) A_y + (B_y + C_y) A_z + (B_z + C_z))$$

$$= ((A_x + B_x) + C_x; (A_x + B_x) + C_x; (A_x + B_x) + C_x)$$

$$= (A + B) + C$$

1.2.8 The Distributive Law

$$c(A + B) = c (Ax + Bx; Ay + By; Az + Bz)$$

= $c (Ax + Bx); c(Ay + By); c(Az + Bz)$
= $c A + c B$

1.2.9 Magnitude of a Vector

$$A = |A| = (A^2x + A^2y + A^2z)^{(1/2)}$$

Example

A helicopter flies 100 m vertically upward, then 500 m horizontally east, then 1000 m horizontally north. How far is it from a second helicopter that started from the same point and flew 200 m upward, 100 m west, and 500 m north?

Solution:

Choosing up, east, and north as basis directions, the final position of the first helicopter is expressed vertically as A = (100,500,1000) and the second as B = (200,-100,500), in meters. Hence, the distance between the final positions is given by the expression

|A - B| = ((100 - 200); (500 + 100); (1000 - 500)) = 787.4m

1.3 Scalar Product

Given two vectors A and B, the scalar product or "dot" product, A.B, is the scalar defined by the equation

$$A.B = AxBx + AyBy + AzBz$$

From the above dentition,

1-Scalar multiplication is commutative(A.B=B.A)

2-It is also distributive (A.(B+C)=A.B+A.C)