The Fundamental Concepts of Vectors

By
Dr. Mohammed F. Al-Mudhaffer
Department of Physics-College of Education for Pure Science 2020-2021

Outlines:

1.5 Triple Products
1.6 Change of Coordinate System: The Transformation Matrix

1.5 Triple Products

The expression

$$
\begin{equation*}
A \cdot(B \times C) \tag{1.36}
\end{equation*}
$$

we can see that the scalar triple product may be written as matrix

$$
A \cdot(B \times C)=\left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \tag{1.37}\\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|=(A \times B) \cdot \vec{C}
$$

H.W: can you prove that?

Additionally, we can write

$$
\begin{equation*}
\vec{A} \times \vec{B} \times \vec{C}=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B}) \tag{1.38}
\end{equation*}
$$

which represents the triple cross products .

Example:

Given the three vectors $\mathbf{A}=\mathbf{i}, \mathbf{B}=\mathbf{i}-\mathbf{j}$, and $\mathbf{C}=\mathbf{k}$, find $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$.

Solution:

Using the determinant expression, Equation 1.7.1, we have

$$
\begin{aligned}
& A .(B \times C)=\left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right| \\
& \mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=\left|\begin{array}{rrr}
1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right|=1(-1+0)=-1
\end{aligned}
$$

$\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})=(\mathbf{i}-\mathbf{j}) 0-\mathbf{k}(\mathbf{1}-\mathbf{0})=-\mathbf{k}$

1.6 Change of Coordinate System: The Transformation Matrix

Consider the vector A expressed relative to the triad ijk :

$$
A=i A x+j A y+k A z
$$

Relative to a new triad ij'k' having a different orientation from that of ijk, the same vector A is expressed as

$$
A=i^{\prime} A x^{\prime}+j^{\prime} A y^{\prime}+k^{\prime} A z^{\prime}
$$

Now the dot product $A . i^{\prime}$ is just $A x^{\prime}$, that is, the projection of A on the unit Vector i^{\prime}. Now the dot product is just $A x^{\prime}$ as

$$
\begin{aligned}
& A . i^{\prime}=\left(i . i^{\prime}\right) A x+\left(j . i^{\prime}\right) A y+\left(k . i^{\prime}\right) A z=A x^{\prime} \\
& A . j^{\prime}=\left(i . j^{\prime}\right) A x+\left(j . j^{\prime}\right) A y+\left(k . j^{\prime}\right) A z=A y^{\prime} \\
& A . i^{\prime}=\left(i . k^{\prime}\right) A x+\left(j . k^{\prime}\right) A y+\left(k . k^{\prime}\right) A z=A z^{\prime}
\end{aligned}
$$

In similar way, the unprimed components are similarly expressed

$$
\begin{aligned}
& A . i=\left(i^{\prime} . i\right) A x^{\prime}+\left(j^{\prime} . i\right) A y^{\prime}+\left(k^{\prime} . i\right) A z^{\prime}=A x \\
& A . j=\left(i^{\prime} . j\right) A x^{\prime}+\left(j^{\prime} . j\right) A y^{\prime}+\left(k^{\prime} . j\right) A z^{\prime}=A y \\
& A . i=\left(i^{\prime} . k\right) A x^{\prime}+\left(j^{\prime} . k\right) A y^{\prime}+\left(k^{\prime} . k\right) A z^{\prime}=A z
\end{aligned}
$$

The above two groups of equations can be written as matrix as following:

$$
\left|\begin{array}{c}
A_{\dot{x}} \\
A_{\dot{y}} \\
A_{z}
\end{array}\right|=\left|\begin{array}{ccc}
(i . \dot{i}) & (j . \dot{i}) & (k . \dot{i}) \\
(i . \dot{j}) & (j . \dot{j}) & (k . \dot{j}) \\
(i . \bar{k}) & (j . \hat{k}) & (k . \dot{k})
\end{array}\right|\left|\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right|
$$

The above matrix is called a TRANSFORMATION MATRIX.

$$
\begin{aligned}
& i . i^{\prime}=(1)(1) \cos (\theta)=\cos (\theta) \\
& \text { j. } i^{\prime}=(1)(1) \cos (90)=0 \\
& \text { k. } i^{\prime}=(1)(1) \cos (90+\theta) \\
& =\cos (90) \cos (\theta)-\sin (90) \sin (\theta) \\
& =-\sin (\theta) \\
& \left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right) \\
& \hline
\end{aligned}
$$

H. W.

1- Prove that the transformation matrix around z-axis equal to
$\left(\begin{array}{lll}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$

2- Prove that the transformation matrix around x-axis equal to

EXAMPLE 1.8.1

Express the vector $\mathbf{A}=3 \mathbf{i}+\mathbf{2 j}+\mathbf{k}$ in terms of the triad $\mathbf{i}^{\prime} \mathbf{j}^{\prime} \mathbf{k}^{\prime}$, where the $x^{\prime} y^{\prime}$-axes are rotated 45° around the z-axis, with the z - and z^{\prime}-axes coinciding, as shown in Figure 1.8.1. Referring to the figure, we have for the coefficients of transformation $\mathbf{i} \cdot \mathbf{i}^{\prime}=\cos 45^{\circ}$ and so on; hence,

$\left(\begin{array}{l}A x^{\prime} \\ A y^{\prime} \\ A z^{\prime}\end{array}\right)=\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$

$$
A_{x^{\prime}}=\frac{3}{\sqrt{2}}+\frac{2}{\sqrt{2}}=\frac{5}{\sqrt{2}} \quad A_{y^{\prime}}=\frac{-3}{\sqrt{2}}+\frac{2}{\sqrt{2}}=\frac{-1}{\sqrt{2}} \quad A_{z^{\prime}}=1
$$

so that, in the primed system, the vector \mathbf{A} is given by

$$
\mathbf{A}=\frac{5}{\sqrt{2}} \mathbf{i}^{\prime}-\frac{1}{\sqrt{2}} \mathbf{j}^{\prime}+\mathbf{k}^{\prime}
$$

Thanks for your attention

1.7 Derivative of a Vector

- Consider a vector A, whose components are function of single variable u. The parameter u is usually time t. The vector may represents position ,velocity and so on.
- Hence $A(u)=i A_{x}(u)+j A_{y}(u)+k A_{z}(u)$
- So the derivative of A can be expressed as following:
- $\frac{d A}{d u}=\lim _{\Delta u \rightarrow 0} \frac{\Delta A}{\Delta u}=$

$$
\begin{aligned}
& =\lim _{\Delta u \rightarrow o}\left(i \frac{\Delta A_{x}}{\Delta u}+j \frac{\Delta A_{v}}{\Delta u}+k \frac{\Delta A_{z}}{\Delta u}\right) \\
& \frac{d A}{d u}=\left(i \frac{d A_{x}}{d u}+j \frac{d A_{y}}{d u}+k \frac{d A_{z}}{d u}\right)
\end{aligned}
$$

- This mean the derivative of vector is a vector whose Cartesian components are ordinary derivatives.
- Now, below are the rules of vector differential.
$\frac{d(A+B)}{d u}=\frac{d A}{d u}+\frac{d A}{d u}$
$\frac{d(n A)}{d u}=\frac{d n}{d u} A+n \frac{d A}{d u}$
$\frac{d(A \cdot B)}{d u}=\frac{d A}{d u} B+A \cdot \frac{d B}{d u}$
$\frac{d(A x B)}{d u}=\frac{d A}{d u} x B+A x \frac{d B}{d u}$

1.8 Position vector of particle: Velocity and Acceleration in Rectangular Coordinates:

$r=i x+j y+k z---P o s i t i o n ~ V e c t o r ~+~$
As $x=x(t), y=y(t)$ and $z=z(t)$ are the components of the position vector of moving particle. So , the particle velocity vector can be written as the following :

$$
\begin{aligned}
& v=\frac{d r}{d x}=\left(i \frac{d x}{d t}+j \frac{d y}{d t}+k \frac{d z}{d t}\right) \\
& \text { or } v=\dot{r}+\dot{x}+\dot{y}+\dot{z}
\end{aligned}
$$

The velocity value is called the speed and defined:

$v=|v|=\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}$
In rectangular components and the second derivative of velocity is called the acceleration
$\boldsymbol{a}=\dot{\boldsymbol{v}}=\frac{d \dot{r}}{d x}=\ddot{\boldsymbol{x}}+\ddot{\boldsymbol{y}}+\ddot{\boldsymbol{z}}$

1.2.3 Multiplication by a Scalar

If c is a scalar and A is a vector, then:

$$
c A=c(A x+A y+A z)=c A x+c A y+c A z=A c
$$

1.2.4 Vectors Subtraction

$$
A-B=(A x-B x)+(A y-B y)+(A z-B z)
$$

1.2.6 The Commutative Law of Addition

This law holds for vectors; that is,

$$
A+B=B+A
$$

Because $A_{x}+B_{x}=B_{x}+A_{x}$ and similarly for the y and z components.

1.2.7 The Associative Law

$$
\begin{aligned}
A+(B+C) & =\left(A_{x}+\left(B_{x}+C_{x}\right) A_{y}+\left(B_{y}+C_{y}\right) A_{z}+\left(B_{z}+C_{z}\right)\right) \\
& =\left(\left(A_{x}+B_{x}\right)+C_{x} ;\left(A_{x}+B_{x}\right)+C_{x} ;\left(A_{x}+B_{x}\right)+C_{x}\right) \\
& =(A+B)+C
\end{aligned}
$$

1.2.8 The Distributive Law

$$
\begin{aligned}
c(A+B) & =c(A x+B x ; A y+B y ; A z+B z) \\
& =c(A x+B x) ; c(A y+B y) ; c(A z+B z) \\
& =c A+c B
\end{aligned}
$$

1.2.9 Magnitude of a Vector

$$
A=|A|=\left(A^{2} x+A^{2} y+A^{2} z\right)^{(1 / 2)}
$$

Example

A helicopter flies 100 m vertically upward, then 500 m horizontally east, then 1000 m horizontally north. How far is it from a second helicopter that started from the same point and flew 200 m upward, 100 m west, and 500 m north?

Solution:

Choosing up, east, and north as basis directions, the final position of the first helicopter is expressed vertically as $A=(100,500,1000)$ and the second as $B=(200,-100,500)$, in meters. Hence, the distance between the final positions is given by the expression

$$
|A-B|=((100-200) ;(500+100) ;(1000-500))=787.4 m
$$

1.3 Scalar Product

Given two vectors A and B, the scalar product or "dot" product, $A . B$, is the scalar defined by the equation

$$
A \cdot B=A x B x+A y B y+A z B z
$$

> From the above dentition,
> 1-Scalar multiplication is commutative(A.B=B.A)
> 2-It is also distributive (A. (B+C)=A.B+A.C)

